315 research outputs found

    Microplastics in Seawater: Recommendations from the Marine Strategy Framework Directive Implementation Process

    Get PDF
    Microplastic litter is a pervasive pollutant present in marine systems across the globe. The legacy of microplastics pollution in the marine environment today may remain for years to come due to the persistence of these materials. Microplastics are emerging contaminants of potential concern and as yet there are few recognized approaches for monitoring. In 2008, the EU Marine Strategy Framework Directive (MSFD, 2008/56/EC) included microplastics as an aspect to be measured. Here we outline the approach as discussed by the European Union expert group on marine litter, the technical Subgroup on Marine litter (TSG-ML), with a focus on the implementation of monitoring microplastics in seawater in European seas. It is concluded that harmonization and coherence is needed to achieve reliable monitoring

    Cities are hotspots for threatened species

    Get PDF
    Aim Although urbanization impacts many species, there is little information on the patterns of occurrences of threatened species in urban relative to non‐urban areas. By assessing the extent of the distribution of threatened species across all Australian cities, we aim to investigate the currently under‐utilized opportunity that cities present for national biodiversity conservation. Location Australian mainland, Tasmania and offshore islands. Methods Distributions of Australia's 1643 legally protected terrestrial species (hereafter ‘threatened species’) were compiled. We assessed the extent to which they overlapped with 99 cities (of more than 10,000 people), with all non‐urban areas, and with simulated ‘dummy’ cities which covered the same area and bioregion as the true cities but were non‐urban. We analysed differences between animals and plants, and examined variability within these groups using species accumulation modelling. Threatened species richness of true versus dummy cities was analysed using generalized linear mixed‐effects models. Results Australian cities support substantially more nationally threatened animal and plant species than all other non‐urban areas on a unit‐area basis. Thirty per cent of threatened species were found to occur in cities. Distribution patterns differed between plants and animals: individual threatened plant species were generally found in fewer cities than threatened animal species, yet plants were more likely to have a greater proportion of their distribution in urban areas than animals. Individual cities tended to contain unique suites of threatened species, especially threatened plants. The analysis of true versus dummy cities demonstrated that, even after accounting for factors such as net primary productivity and distance to the coast, cities still consistently supported a greater number of threatened species. Main conclusions This research highlights that Australian cities are important for the conservation of threatened species, and that the species assemblages of individual cities are relatively distinct. National conservation policy should recognize that cities play an integral role when planning for and managing threatened species

    Perspectives of people in Mali toward genetically-modified mosquitoes for malaria control

    Get PDF
    Background: Genetically-modified (GM) mosquitoes have been proposed as part of an integrated vector control strategy for malaria control. Public acceptance is essential prior to field trials, particularly since mosquitoes are a vector of human disease and genetically modified organisms (GMOs) face strong scepticism in developed and developing nations. Despite this, in sub-Saharan Africa, where the GM mosquito effort is primarily directed, very little data is available on perspectives to GMOs. Here, results are presented of a qualitative survey of public attitudes to GM mosquitoes for malaria control in rural and urban areas of Mali, West Africa between the months of October 2008 and June 2009. Methods: The sample consisted of 80 individuals - 30 living in rural communities, 30 living in urban suburbs of Bamako, and 20 Western-trained and traditional health professionals working in Bamako and Bandiagara. Questions were asked about the cause of malaria, heredity and selective breeding. This led to questions about genetic alterations, and acceptable conditions for a release of pest-resistant GM corn and malaria-refractory GM mosquitoes. Finally, participants were asked about the decision-making process in their community. Interviews were transcribed and responses were categorized according to general themes. Results: Most participants cited mosquitoes as one of several causes of malaria. The concept of the gene was not widely understood; however selective breeding was understood, allowing limited communication of the concept of genetic modification. Participants were open to a release of pest-resistant GM corn, often wanting to conduct a trial themselves. The concept of a trial was reapplied to GM mosquitoes, although less frequently. Participants wanted to see evidence that GM mosquitoes can reduce malaria prevalence without negative consequences for human health and the environment. For several participants, a mosquito control programme was preferred; however a transgenic release that satisfied certain requirements was usually acceptable. Conclusions: Although there were some dissenters, the majority of participants were pragmatic towards a release of GM mosquitoes. An array of social and cultural issues associated with malaria, mosquitoes and genetic engineering became apparent. If these can be successfully addressed, then social acceptance among the populations surveyed seems promising

    Measuring Global Trends in the Status of Biodiversity: Red List Indices for Birds

    Get PDF
    The rapid destruction of the planet's biodiversity has prompted the nations of the world to set a target of achieving a significant reduction in the rate of loss of biodiversity by 2010. However, we do not yet have an adequate way of monitoring progress towards achieving this target. Here we present a method for producing indices based on the IUCN Red List to chart the overall threat status (projected relative extinction risk) of all the world's bird species from 1988 to 2004. Red List Indices (RLIs) are based on the number of species in each Red List category, and on the number changing categories between assessments as a result of genuine improvement or deterioration in status. The RLI for all bird species shows that their overall threat status has continued to deteriorate since 1988. Disaggregated indices show that deteriorations have occurred worldwide and in all major ecosystems, but with particularly steep declines in the indices for Indo-Malayan birds (driven by intensifying deforestation of the Sundaic lowlands) and for albatrosses and petrels (driven by incidental mortality in commercial longline fisheries). RLIs complement indicators based on species population trends and habitat extent for quantifying global trends in the status of biodiversity. Their main weaknesses are that the resolution of status changes is fairly coarse and that delays may occur before some status changes are detected. Their greatest strength is that they are based on information from nearly all species in a taxonomic group worldwide, rather than a potentially biased subset. At present, suitable data are only available for birds, but indices for other taxonomic groups are in development, as is a sampled index based on a stratified sample from all major taxonomic groups

    Food consumption trends and drivers

    Get PDF
    A picture of food consumption (availability) trends and projections to 2050, both globally and for different regions of the world, along with the drivers largely responsible for these observed consumption trends are the subject of this review. Throughout the world, major shifts in dietary patterns are occurring, even in the consumption of basic staples towards more diversified diets. Accompanying these changes in food consumption at a global and regional level have been considerable health consequences. Populations in those countries undergoing rapid transition are experiencing nutritional transition. The diverse nature of this transition may be the result of differences in socio-demographic factors and other consumer characteristics. Among other factors including urbanization and food industry marketing, the policies of trade liberalization over the past two decades have implications for health by virtue of being a factor in facilitating the ‘nutrition transition’ that is associated with rising rates of obesity and chronic diseases such as cardiovascular disease and cancer. Future food policies must consider both agricultural and health sectors, thereby enabling the development of coherent and sustainable policies that will ultimately benefit agriculture, human health and the environment

    Levers and leverage points for pathways to sustainability

    Get PDF
    Humanity is on a deeply unsustainable trajectory. We are exceeding planetary boundaries and unlikely to meet many international sustainable development goals and global environmental targets. Until recently, there was no broadly accepted framework of interventions that could ignite the transformations needed to achieve these desired targets and goals. As a component of the IPBES Global Assessment, we conducted an iterative expert deliberation process with an extensive review of scenarios and pathways to sustainability, including the broader literature on indirect drivers, social change and sustainability transformation. We asked, what are the most important elements of pathways to sustainability? Applying a social–ecological systems lens, we identified eight priority points for intervention (leverage points) and five overarching strategic actions and priority interventions (levers), which appear to be key to societal transformation. The eight leverage points are: (1) Visions of a good life, (2) Total consumption and waste, (3) Latent values of responsibility, (4) Inequalities, (5) Justice and inclusion in conservation, (6) Externalities from trade and other telecouplings, (7) Responsible technology, innovation and investment, and (8) Education and knowledge generation and sharing. The five intertwined levers can be applied across the eight leverage points and more broadly. These include: (A) Incentives and capacity building, (B) Coordination across sectors and jurisdictions, (C) Pre-emptive action, (D) Adaptive decision-making and (E) Environmental law and implementation. The levers and leverage points are all non-substitutable, and each enables others, likely leading to synergistic benefits. Transformative change towards sustainable pathways requires more than a simple scaling-up of sustainability initiatives—it entails addressing these levers and leverage points to change the fabric of legal, political, economic and other social systems. These levers and leverage points build upon those approved within the Global Assessment's Summary for Policymakers, with the aim of enabling leaders in government, business, civil society and academia to spark transformative changes towards a more just and sustainable world. A free Plain Language Summary can be found within the Supporting Information of this article.Fil: Chan, Kai M. A.. University of British Columbia; CanadáFil: Boyd, David R.. University of British Columbia; CanadáFil: Gould, Rachelle. University of Vermont; Estados UnidosFil: Jetzkowitz, Jens. Staatliches Museum fur Naturkunde Stuttgart; AlemaniaFil: Liu, Jianguo. Michigan State University; Estados UnidosFil: Muraca, Bárbara. University of Oregon; Estados UnidosFil: Naidoo, Robin. University of British Columbia; CanadáFil: Beck, Paige. University of British Columbia; CanadáFil: Satterfield, Terre. University of British Columbia; CanadáFil: Selomane, Odirilwe. Stellenbosch University; SudáfricaFil: Singh, Gerald G.. University of British Columbia; CanadáFil: Sumaila, Rashid. University of British Columbia; CanadáFil: Ngo, Hien T.. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; AlemaniaFil: Boedhihartono, Agni Klintuni. University of British Columbia; CanadáFil: Agard, John. The University Of The West Indies; Trinidad y TobagoFil: de Aguiar, Ana Paula D.. Stockholms Universitet; SueciaFil: Armenteras, Dolors. Universidad Nacional de Colombia; ColombiaFil: Balint, Lenke. BirdLife International; Reino UnidoFil: Barrington-Leigh, Christopher. Mcgill University; CanadáFil: Cheung, William W. L.. University of British Columbia; CanadáFil: Díaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Driscoll, John. University of British Columbia; CanadáFil: Esler, Karen. Stellenbosch University; SudáfricaFil: Eyster, Harold. University of British Columbia; CanadáFil: Gregr, Edward J.. University of British Columbia; CanadáFil: Hashimoto, Shizuka. The University Of Tokyo; JapónFil: Hernández Pedraza, Gladys Cecilia. The World Economy Research Center; CubaFil: Hickler, Thomas. Goethe Universitat Frankfurt; AlemaniaFil: Kok, Marcel. PBL Netherlands Environmental Assessment Agency; Países BajosFil: Lazarova, Tanya. PBL Netherlands Environmental Assessment Agency; Países BajosFil: Mohamed, Assem A. A.. Central Laboratory for Agricultural Climate; EgiptoFil: Murray-Hudson, Mike. University Of Botswana; BotsuanaFil: O'Farrell, Patrick. University of Cape Town; SudáfricaFil: Palomo, Ignacio. Basque Centre for Climate Change; EspañaFil: Saysel, Ali Kerem. Boğaziçi University; TurquíaFil: Seppelt, Ralf. Martin-universität Halle-wittenberg; AlemaniaFil: Settele, Josef. German Centre for Integrative Biodiversity Research-iDiv; AlemaniaFil: Strassburg, Bernardo. International Institute for Sustainability, Estrada Dona Castorina; BrasilFil: Xue, Dayuan. Minzu University Of China; ChinaFil: Brondízio, Eduardo S.. Indiana University; Estados Unido

    Mixed phylogenetic signal in fish toxicity data across chemical classes

    Get PDF
    Chemical use in society is growing rapidly and is one of the five major pressures on biodiversity worldwide. Since empirical toxicity studies of pollutants generally focus on a handful of model organisms, reliable approaches are needed to assess sensitivity to chemicals across the wide variety of species in the environment. Phylogenetic comparative methods (PCM) offer a promising approach for toxicity extrapolation incorporating known evolutionary relationships among species. If phylogenetic signal in toxicity data is high, i.e., closely related species are more similarly sensitive as compared to distantly related species, PCM could ultimately help predict species sensitivity when toxicity data are lacking. Here, we present the largest ever test of phylogenetic signal in toxicity data by combining phylogenetic data from fish with acute mortality data for 42 chemicals spanning 10 different chemical classes. Phylogenetic signal is high for some chemicals, particularly organophosphate pesticides, but not necessarily for many chemicals in other classes (e.g., metals, organochlorines). These results demonstrate that PCM may be useful for toxicity extrapolation in untested species for those chemicals with clear phylogenetic signal. This study provides a framework for using PCM to understand the patterns and causes of variation in species sensitivity to pollutants

    Integrative policy development for healthier people and ecosystems : a European case analysis

    Get PDF
    There is growing evidence of the inter‐relationships between ecosystems and public health. This creates opportunities for the development of cross‐sectoral policies and interventions that provide dual benefits to public health and to the natural environment. These benefits are increasingly articulated in strategy documents at national and regional level, yet implementation of integrative policies on the ground remains limited and fragmented. Here, we use a workshop approach to identify some features of this evidence–implementation gap based on policy and practice within a number of western European countries. The driving forces behind some recent moves towards more integrative policy development and implementation show important differences between countries, reflecting the non‐linear and complex nature of the policy‐making process. We use these case studies to illustrate some of the key barriers to greater integrative policy development identified in the policy analysis literature. Specific barriers we identify include: institutional barriers; differing time perspectives in public health and ecosystem management; contrasting historical development of public health and natural environment disciplinary policy agendas; an incomplete evidence base relating investment in the natural environment to benefits for public health; a lack of appropriate outcome measures including benefit–cost trade‐offs; and finally a lack of integrative policy frameworks across the health and natural environment sectors. We also identify opportunities for greater policy integration and examples of good practice from different countries. However, we note there is no single mechanism that will deliver integrative policy for healthier people and ecosystems in all countries and situations. National governments, national public agencies, local governments, research institutions, and professional bodies all share a responsibility to identify and seize opportunities for influencing policy change, whether incremental or abrupt, to ensure that ecosystems and the health of society are managed so that the interests of future generations, as well as present generations, can be protected

    Alien Planktonic Species in the Marine Realm: What Do They Mean for Ecosystem Services Provision?

    Get PDF
    Human well-being is significantly affected by the contributions provided by ecosystems, or ecosystem services. In this well-illustrated atlas, world-class experts identify and discuss key driving forces, trade-offs, and synergies of ecosystem services. Through interdisciplinary case studies varying across ecosystems and scales, this atlas narrows the knowledge gap between ecosystem services management and related fields of study. This atlas begins with conceptual background and proceeds to present drivers and their risks for ecosystems, their functions and services, and biodiversity. Trade-offs and synergies among ecosystem services and societal responses to the drivers and trade-offs are discussed. Sustainable land management and governance concepts are demonstrated throughout the atlas. Environmental scientists, practitioners and policy makers worldwide will appreciate the solutions and best practices identified throughout the chapters. Students of environmental sciences, socio-economics and landscape planning will find this atlas to be a valuable read, as well
    corecore